首页
关于我们
公司简介
企业文化
合作伙伴
产品中心
重点推荐
标准精度GNSS模块
高精度GMOUSE
高精度天线
高精度GNSS模块
惯性导航DR模块
GMOUSE 一体化天线模块
2.4G通讯模块
蓝牙音响方案
定位开发板类
通讯开发板类
域格通讯模块
高新兴通讯模块
中移物联通讯模块
通讯与定位天线
配件类
定位终端
SIMCom模组
新闻中心
公司新闻
行业资讯
服务中心
销售服务
常见问题
营销网络
应用案例
下载中心
联系我们
在线商城
阿里巴巴店铺
淘宝店铺
CN
EN
关于我们
产品中心
新闻中心
服务中心
应用案例
下载中心
联系我们
首页
>>
新闻中心
>>
行业资讯
公司新闻
行业资讯
北斗三号星的技术特点的详述
发布时间: 2021-03-22 06:24:14
浏览次数:
北斗三号星的技术特点的详述
B1C是北斗三号的主用信号,
未来所有北斗用户、乃至全球的GNSS用户都需要接收,将成为北斗系统的重要标志(类似于当前GPS的L1 C/A和未来的L1C信号)。B1C是一个技术先进且具有自主知识产权的新一代导航信号,既能满足位置服务等消费类低成本用户的需求,又能满足高精度测量等专业类高性能用户的需求。
B1C信号的载波频率为1575.42MHz,与GPS L1和GalileoE1共享频点,带宽为32.736MHz。
采用数据与导频正交的现代化信号结构:数据分量由导航电文和测距码经子载波调制产生,采用正弦BOC(1, 1)调制;导频分量由测距码经子载波调制产生,采用QMBOC(6, 1,4/33)调制。数据分量与导频分量的功率比为1:3,信号功率向导频倾斜,符合测距精度越高越好、解调性能够用即可的设计原则,有利于提升B1C信号的整体性能。
B1C信号的测距码结构与B2a相同,均由主码和子码异或构成。
主码速率为1.023Mcps,码长为10230,由长度为10243的Weil码通过截断获得。主码共有126个,即数据码和导频码各63个。B1C导频分量的子码长度为1800,由长度为3607的Weil码通过截断得到,生成方式与主码相同,共63个。
B1C信号的导航电文采用B—CNAV1格式。
B-CNAV1导航电文数据调制在B1C数据分量上,每帧电文长度为1800符号位,符号速率为100 sps,播发周期为18秒。
B2a为北斗三号的第二个民用信号,用来替换北斗二号的B2I信号,
主要为双频或者三频接收机提供服务,可用于生命安全服务和高精度测量等高性能服务,也可用于对性能要求较高的消费类服务。
B2a信号载波频率1176.45MHz,与GPSL5和Galileo E5a共享频点,带宽为20.46MHz。
也采用数据与导频正交的结构(QPSK):数据分量由导航电文数据和测距码调制产生,采用BPSK(10)调制;导频分量仅包括测距码,也采用BPSK(10)调制。导频分量与数据分量的功率比为1:1。
刚才已经说过,
B2a信号的测距码结构与B1C相同,也由主码和子码异或构成。主码速率为10.23Mcps,码长为10230,由两个13级线性反馈移位寄存器通过移位及模二和生成的Gold码扩展得到。
在同一卫星上,B2a信号两个分量的主码生成多项式不同,但采用相同的初始状态。B2a信号测距码共有126个,其中数据码、导频码各63个。对于不同的卫星,B2a数据分量的子码相同,B2a导频分量的子码不同。B2a数据分量子码码长为5,采用固定的5位码序列作为子码,子码序列为00010。B2a导频分量子码码长为100,由长度为1021的Weil 码通过截断得到,定义方式与B1C主码相同。
B2a信号的导航电文采用B-CNAV2格式。
B-CNAV2导航电文数据调制在B2a数据分量上,每帧电文长度为600符号位,符号速率为200sps,播发周期为3秒。B-CNAV2导航电文最多可定义63种信息类型,当前定义了7个有效信息类型。
B1C是一种全新的导航信号,技术先进、结构复杂,信号分量较多,可以发展出多种不同接收方案,
以满足不同用户需求。而且,北斗三号将在MEO和IGSO卫星上同时播发B1C和B1I,将发展出独特的接收方法,可充分挖掘北斗三号的潜能。B2a信号是一种数据与导频正交的复合信号,与GPS L5和Galileo E5a相似,其基本的接收方法已趋成熟。因此,未来北斗三号接收技术的主要创新在于B1C信号接收处理的新理论、新方法,以及B1C与GPS L1C、Galileo E1 OS信号高效的互操作接收技术。这也是本报告接下来要介绍的内容。
先来分析
B1C信号的结构特点。
前面已经谈到B1C信号由BOC(1, 1)数据分量与BOC(6, 1, 4/33)导频分量构成,其中的BOC(6, 1, 4/33)分量包含了正交的BOC(1, 1)和BOC(6, 1)成分。因此,整个B1C信号实际包含了三个实分量:BOC(1, 1)数据、BOC(1, 1)导频和BOC(6, 1)导频。
由此,从方法论的角度出发,我们可以发展出两种基本的接收方法:
宽带接收和窄带接收。
宽带接收:
带宽取14MHz左右,同时接收窄带分量BOC(1, 1)和宽带分量BOC(6, 1)。在这种匹配接收模式下,由于B1C的QMBOC与TMBOC、CMBOC具有相同的功率谱密度,三者具有完全相同的捕获、跟踪性能。
窄带接收:
带宽取4MHz左右,只接收窄带分量BOC(1, 1)。当接收机只处理BOC(1,1)分量时,QMBOC具有更好的性能:QMBOC的捕获灵敏度比TMBOC提高0.51dB以上;QMBOC性能在接收带宽为4MHz时比TMBOC提高0.6164 dB。
因此,
整体来说QMBOC的性能优于GPS和Galileo的TMBOC、CMBOC信号。
由于北斗三号将在MEO和IGSO卫星上同时播发B1C和B1I,而B1I、B1C基于同一星上时钟分别产生,经过一种特殊的复用方案后经功放和天线发射到地面,故从用户的角度可将B1C和B1I视为一个特殊的双边带宽带信号。我们暂且称之为B1频点上的非对称双边带信号B1-ADS。B1-ADS信号的特点有:
(1)
很高的等效RMS带宽:
B1-ADS等效带宽不仅大于B1I和B1C,甚至大于采用10.23 Mcps宽带B2a信号。因此,B1-ADS信号在理论上具有显著的测距性能优势,以及明显的抗干扰、抗多径优势。
(2)
复杂的自相关函数:
B1-ADS的自相关函数具有非常尖锐的主峰,说明B1-ADS信号理论上具有显著的测距性能优势,但也具有更复杂的边峰结构,在接收中需要解决复杂的多峰模糊问题。
由于B1-ADS的两个边带B1I、B1C信号的调制方式、码速率、电文和功率都不相同,传统的用于对称信号接收的处理技术不适用。因此,我们需要发展一类特殊的接收方法来接收B1-ADS,即同时接收B1I和B1C,进一步挖掘北斗三号信号测距精度和抗干扰、抗多径的潜能。下图是一种建议的B1-ADS接收方案,也就是B1I和B1C信号的联合接收方案。
这种方案的基本思路是:借鉴DET独立跟踪副载波解决多峰模糊;上下边带分别进行相关,避免生成副载波波形,并可灵活支持双边带和单边带处理;上下边带采用不同结构的相关器,解决上下边带调制方式不同问题;利用已知发射功率比值进行功率补偿,解决上下边带功率不同问题;利用数据辅助的电文剥离方法,解决B1I仅有数据通道的问题。
这种方法可以较低的硬件复杂度支持B1-ADS信号的准最优接收处理,此外还可以兼容B1I或B1C独立接收处理模式。
由此可以看出我国北斗三号星的技术特点是精细和成功的。而2020年6月部署全面完成的北斗三号系统在精度上,北斗是唯一采用中圆轨道、地球静止轨道、地球同步轨道三种轨道搭配的星座,这样亚太地区可以几乎永久保持至少12颗卫星可见,大幅提高该区域定位精度。另外,北斗使用的是三频信号,有利于提升抗电离层的干扰,提高了定位可靠性。北斗全球系统星座部署完成堪称2020年度中国最成功的科技成果之一,也是守护我们国家安全的重要法宝。
推荐新闻
春运抢票?高并发?和北斗时空智能有啥关系?
智能工厂人员定位系统:改变厂区管理方式的科技进化
君诺达 - 2025年春节放假通知
GPS智能种植机的原理以及作用
北斗模块:公共安全与救援的得力助手
关于GPS智能调度系统的认识
GPS授时模块原理与相关应用
北斗卫星导航:未来导航技术的关键
无人机救援:将科技拯救危急生命
CORS基站与前端开发的安全策略
QQ客服
电话
13530756257
微信
返回顶部